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Abstract 

The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA) 

and docosahexaenoic (DHA) have been reported to improve obesity-associated metabolic 

disorders includingchronic inflammation, insulin resistance and dyslipidaemia. Growing 

evidence exits about adipose tissue as a target in mediating the beneficial effects of these 

marine n-3 PUFAs in adverse metabolic syndrome manifestations. Therefore, in this 

manuscript we focus in reviewing the current knowledge about effects of marine n-3 PUFAs 

on adipose tissue metabolism and secretory functions. This scope includes n-3 PUFAs actions 

on adipogenesis, lipogenesis and lipolysis as well as on fatty acid oxidation and mitochondrial 

biogenesis. The effects of n-3 PUFAs on adipose tissue glucose uptake and insulin signaling 

are also summarized. Moreover, the roles of peroxisome proliferator-activated receptor γ 

(PPARγ) and AMPK activation in mediating n-3 PUFAs actions on adipose tissue 

functionsare discussed. Finally, the mechanisms underlying the ability of n-3 PUFAs to 

prevent and/or ameliorate adipose tissue inflammation are also revised,focusing on the role of 

n-3 PUFAs-derived specialized proresolving lipid mediators such as resolvins, protectins and 

maresins.  

 

Keywords: Marine origin omega-3 fatty acids, obesity, metabolic syndrome, adipose tissue, 

glucose metabolism, lipid metabolism, adipogenesis, adipokines, omega-3-derived 

proresolving lipid mediators. 
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1. Adipose tissue dysfunctionin obesity and metabolic complications 

1.1. Obesity and adipose tissue 

Obesity constitutes a global health problem responsible of 2.8 million deaths each year and 

whose prevalence has almost doubled in the last thirty years [1]. This condition, characterized 

by an excessive fat accumulation and accompanied by chronic low-grade inflammation,is 

related to metabolic diseases including type 2 diabetes, dyslipidemia, atherosclerosis or 

hypertension being those main components of Metabolic Syndrome (MetS)[2]. 

Adipose tissue plays a key role in the pathogenesis of obesity and associated complications. 

Three types of adipose tissue with different precursor cells, phenotype, function and 

regulation have been, so far,identified: 1) the energy storing white adipose tissue (WAT), 2) 

the energy consuming brown adipose tissue (BAT), and3) the recently describedbeige/”brite” 

adipose tissue[3]. 

WAT is the main storage organ, accumulating the excess of energy in the form of 

triglycerides, which can be mobilized under energy deprivation conditions. In addition, WAT 

acts as an important endocrine organ releasing a broad range of molecules called adipokines 

involved in the regulation of many physiological functions including body weight (leptin), 

vascular metabolism (PAI-1), glucose metabolism and insulin sensitivity (adiponectin) and a 

number of inflammatory cytokines and chemokines(TNF-α, IL-1, IL-6, RBP-4 or MCP-

1)among others [4,5].Therefore, WAT is integrated in an overall cross-talk between different 

organs and tissues involved in energy homeostasis, including central nervous system (CNS), 

liver, skeletal muscle and pancreas due to the release of adipocytokines and the expression of 

receptors that facilitates two-waycommunications[6]. 

WAT is distributed around the body in different depots such as abdominal, subcutaneous or 

gonadal regions with different adipokine secretion profiles. It has been reported that 

accumulation of visceral adipose tissue (VAT) has a prominent role as a risk factor for 
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MetSdue to its location surrounding important organs such as liver, which directly receives 

venous blood from VAT through the portal vein. Moreover it is known to be more 

metabolically active than other depots with increased protein secretion[7]. In addition, in 

obesity VAT expandability is more limited than subcutaneous adipose tissue leading more 

easily to hypertrophied adipocytes [2,7]. 

On the other hand, BAT is known to be specialized in adaptativethermogenesis being 

uncoupling protein 1 (UCP1) the main responsible[8]. This thermogenic mechanism plays a 

key role defending against hypothermia and obesity. However, the endocrine function of 

suchadipocytes is poorly characterized yet. Increasing evidence indicates that BAT produces 

factors with autocrine and paracrine actions on metabolism such as fibroblast growth factor 

21 (FGF-21) or retinol binding protein 4 (RBP4)[9–11]. 

During the last years a new type of adipose tissue has been described and named as beige or 

“brite” adipose tissue. These recently discovered adipocytes have been found within some 

white adipose depots, but exerting similar functional and molecular characteristics as brown 

adipocytes. As a matter of fact, beige adipocytes have morphological characteristics of 

classical brown adipocytes. Thus, they are multilocularand have increased mitochondrial 

respiratory machinery and express inducible UCP1 having thereforethermogenic 

characteristics. However, it has been recently described that beige adipocytes express several 

beige adipocyte-specific genes that are not expressed in classical brown adipocytes such as 

Tbx1, Tmem26 and CD137, among others[12,13]. 

1.2 Obesity and inflammation 

Increased adiposity is accompanied by a low-grade chronic inflammation.In order to 

accumulate the excess of energy intake, a hypertrophy and hyperplasia of adipocytes take 

place. These hypertrophied adipocytes present an altered secretory pattern resulting in 

increased secretion of proinflammatoryadipokines, cytokines and chemokines such 
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asmonocyte chemoattractant protein-1 (MCP-1), leptin, interleukin (IL)-6 or tumor necrosis 

factor (TNF)-α, and reduced production of anti-inflammatory adipokines, including 

adiponectin[14,15]. 

In addition, abundant researchhas demonstrated that a progressive infiltration and activation 

of macrophages and T cells to adipose tissue occurs in hypertrophied adipose tissue [16–

19].During obesity, the pro-inflammatory MCP-1 is secreted at high levels promoting the 

recruitment of macrophages to WAT[20]. Furthermore, it is recognized that a polarization of 

macrophages with an anti-inflammatory phenotype M2 to a M1 pro-inflammatory phenotype 

occurs in WAT during obesity, which also contributes to the generation of an inflammatory 

state[21,22]. These M1 macrophages usually are accumulated surrounding the hypertrophic 

necrotic adipocytes forming a crown like structure[23]. 

Although,initially all these inflammatory processes belong to the adipose tissue, they can 

finally derive in a chronic systemic inflammation[24,25], affecting different tissues such as 

liver and skeletal muscle, and causing metabolic disturbances including insulin resistance (IR) 

or non-alcoholic fatty liver disease[26–30]. 

Therefore, modulatingthe production/release of pro-inflammatory/anti-inflammatory 

moleculesfrom adipose tissue becomes an important target to avoid or alleviate the systemic 

inflammation andto reduce the development of comorbidities associated with obesity such as 

type 2 diabetes or dyslipidemia.  

 

2. N-3 PUFAs in obesity and related-metabolic disorders 

N-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) are essential nutrients derived from 

marine or vegetal sources, being the most relevant those from marine origin as 

eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6), which can be 

found in oily fish including salmon, tuna, mackerel, anchovy and sardines[31]. Moreover, 
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although the vegetable derivative, α-linolenic acid (ALA, C18:3) is able to be converted to 

EPA and DHA into the organism, the conversion rate is apparently modest, making necessary 

a direct intake of these marine n-3 PUFAs to achieve an optimal consumption [32–34]. 

Varying depending of gender, conversion rate in men ranges between 0-4% and between 4-

8% for DHA and EPA, respectively [32,34] while in women is approximately 9.2% and 21% 

for DHA and EPA, respectively[33]. 

Several trials in humans and rodents have suggested potential beneficial effects of these 

marine n-3 PUFAs in different chronic inflammatory diseases such as cardiovascular disease, 

atherosclerosis, Alzheimer, asthma, arthritis, colitis or obesity and MetS[35]. 

In this review we summarize the current knowledge about the beneficial properties of n-3 

PUFAs of marine origin on obesity and associated disorders, particularly focusing on their 

actions on adipose tissue size and adipocyte metabolism and function.  

2.1. Evidence from animal models  

There is evidence of n-3 PUFAs beneficial effects on obesity associated diseases as MetS or 

type 2diabetes. Table 1 summarizes trials analyzing the effects of marine origin n-3 PUFAs 

supplementation on adiposity and metabolic syndrome features in animal models of obesity. 

The body lowering actions of marine origin n-3 PUFAs supplementation are controversial. 

Thus, some studies support that n-3 PUFAs can significantly decrease body weight and fat 

mass[36–47]. Other trials did not find any significant action on body weight loss but a 

significant reduction in some fat depots was observed in n-3 PUFAs supplemented groups 

[45,48–50]. In contrast, other studies did not report any change in body weight or fat mass 

after dietary supplementation with n-3 PUFAs[51–56]. 

Regarding lipid metabolism, a wide range of studies support thetriglyceride (TG)-lowering 

properties of marine origin n-3 PUFAs 

supplementation[42,47,51,53,39,36,44,57,46,43,45,56,49,50] (see Table 1).  
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Additionally, most of studies in rodents also described favorable effects of dietary 

supplementation with marine origin n-3 PUFAs on glucose metabolism and insulin sensitivity 

(see Table 1). Thus, although there are some investigations that did not reach conclusive 

results[50–52], most of the reviewed publications reported improvements in fasting 

glycemia[47,53,39,41,42,46,36,44,49]and 

insulinemia[47,41,54,48,43,44,46,45,56].Furthermore, some studies have found an 

improvement inglucose or insulin tolerance[36,41,45,46,49]in murine models treated with 

EPA, DHA, a mixture of both or in combination with Rosiglitazone. However, other trials did 

not find any significant change in glucose tolerance in n-3 PUFAs supplemented 

groups[52,54](see Table 1). 

The apparent controversial outcomes between trials regarding the effects on n-3 PUFAs on 

body weight, glucose and lipid metabolism could be due to the different animal model of 

obesity (genetic vs diet-induced obesity) used, as well as to the type and formulation of n-3 

PUFAs (EPA or DHA or a combination in TG form or as Ethyl ester), the dosage and the 

duration of treatment. 

Moreover, Table 2 summarizes studies evaluating the effects of endogenous production of n-3 

PUFAs, using the fat-1 transgenic mice, which contain the fat-1 gene from 

Caenorhabditiselegansand are able to convert n-6 to n-3 PUFAs in vivo[58]. Although the 

evidence suggest that the general increment of n-3 PUFAs into the organism of fat-1 mice has 

no effect in the reduction of weight in the context of either a isocaloric diet or versus a calorie 

restriction regime [59–61], several studies have observed that these mice are protected against 

the weight gain subsequent to a high fat diet (HFD) [61,62]. Moreover, even though the study 

of White et al. [60] did not observe differences in both body weight and adiposity between the 

fat-1 mice and their matched wild-type fed with a HFD, other study of the same group [63], 

found changes in the adipocyte size into the epididymal adipose tissue of transgenic mice, 
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predominating the mid-sized adipocytes upon the large and very large adipocytes. The effects 

of endogenous production of n-3 PUFAs on lipid metabolism in the fat-1 mice have been 

evaluated only in few studies.Although Belchior et al. [61] observed no effect in any of the 

blood lipid parameters measured, Romanatto et al. [64] found in the 8-month-old fat-1 mice 

lower levels of TG and cholesterol than the littermate controls (see Table 2). 

Concerningglucose homeostasismarkers in fat-1 transgenic mice, slightly different outcomes 

have been found.While some studies observed low fasting glucose and improvements in 

insulin sensitivity in fat-1 male mice fed with HFD [60,61], other trial did not detect 

significant changes [65]. Despite these findings, the increment in the endogenous production 

of n-3 PUFAs has been shown to have beneficial impact in glucose tolerance [60,61,63,65] 

and in metabolic age-related glucose alterations [64]. In this sense, Bellenger et al. [66] 

observed that in the fat-1 mice, the β-cell damage and the impairments in glucose metabolism 

caused by the toxic effects of streptozotocin were prevented (see Table 2). 

2.2. Evidences from clinical trials in humans 

During the last years a number of clinical trials have been carried out to find outthe potential 

benefits of n-3 PUFAs supplementation in subjects with obesity and metabolic syndrome 

features (see reviews[31,67,68]). 

In accordance with the outcomes in animal models, most of clinical trials in humans strongly 

support the hypotriglyceridemic benefits of marine origin n-3 PUFAs supplementation. Based 

on this available evidence, several agencies and associations have recommended intakes of 2 

to 4 g per day as an effective therapy for hypertriglyceridemia[69,70].However, the effects of 

marine origin n-3 PUFAs on body weight and body composition and on cholesterol 

metabolism in patients with MetS remain unclear. Furthermore, in contrast to the observations 

in murine models suggesting that the supplementation with marine origin n-3 PUFAs could 

promote an improvement in insulin sensitivity, most of trials in subjects with MetS suggest 
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that n-3 PUFAs are not effective in decreasing glucose metabolism parameters or improving 

the insulin sensitivity[68].Further larger clinical trials are needed to better elucidate the 

efficacy of n-3 PUFAs on these MetSfeatures. 

 

3. n-3 PUFAs actions in adipose tissue  

A significant number of studies consider that n-3PUFAs are able to improve impaired 

metabolism in obesity by modulating main metabolic pathways in key metabolic organs such 

as adipose tissue, liver and skeletal muscle[71,38,72,73,46,15,31].Here, we will focus in 

reviewing theactions and mechanisms of marine origin n-3 PUFAs in adipose tissue 

metabolism and functions.  

3.1. Effects on adipocyte proliferation and differentiation 

Adipogenesis is the process of differentiation of preadipocytes to mature adipocytes. 

Adipocyte differentiation is a complex process mainly regulated by two families of 

transcription factors, CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome 

proliferator-activated receptor γ (PPARγ). Thus,C/EBPβ and C/EBPδ are involved in the early 

stages of adipogenesis. In fact, once activated, C/EBPβ trans-activates the expression of 

C/EBPα and PPARγ, two master transcription factors for maintain terminal 

adipocytedifferentiation, which coordinately activate genes whose expression produces the 

adipocyte phenotype [74,75].  

In this context, marine origin n-3 PUFAs have been shown to regulate adipocyte 

differentiation, but their actions are still controversial. Thus, some studies referred that an 

increase in adipogenesis occurred when n-3 PUFAs are added to the culture medium [76,77]. 

Moreover, it has been reported that DHA (50µM)more than EPA induced differentiation of 

adipocytes by upregulating mRNA levels of C/ebpα, Pparγ and adipocyte protein 2 (aP2) in 
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3T3-L1 cells [76]. Besides, it has been described increased protein levels of PPARγ, followed 

by an accumulation of lipid droplets when EPA(250µM) was added [77].  

In contrast, other trials support the ability of marine origin n-3 PUFAs to inhibit adipocyte 

proliferation and differentiation by downregulating the main transcription factors involved in 

adipogenesis[78–81]. In such a way, Kim et al. [81] reported that DHA  (25-200µM)treatment 

resulted in a dose-dependent inhibition of adipose differentiation, reducing lipid area and 

number of lipid droplets. Further investigations have revealed that DHA (100 µM) and EPAas 

well, reduced lipid accumulation and led to lower Pparγ gene expression during 

differentiation. Moreover, EPA is also able to suppress C/ebpβ expression levels in 3T3-L1 

cells [78,79]. 

In addition to the effects on adipocyte differentiation, some studies have suggested that n-3 

PUFAs can also regulate adipocyte apoptosis. In this way, Kim et al. [81] reported that DHA 

(100-200 µM) induced apoptosis in 3T3-L1 adipocytes. Other study found that EPA (250 

µM) reduced pAKT, BCL-2 and NF-κB, while increase AKT, BAD and PPARγ levels, 

suggesting that n-3 PUFAs promote differentiation, inhibit proliferation and induce apoptosis 

in this preadipocyte cell line [77]. 

Furthermore, marine origin n-3 PUFAs have been related with a modulation in cellularity in 

adipose tissue in rodents. In this sense, Tekeleselassie et al. [82] found increased number of 

adipocytes in inguinal fat depots rats when n-3 PUFAs (3.33%-6.67% wt/wt)were added to 

diet for 22 weeks. Accordingly, White at al. [63] observed an increment of the pro-adipogenic 

transcription factor Ppargene expression and an inhibition of Gata3 gene, an inhibitor of 

adipocyte transition to fully differentiated adipocytein epididymal adipose tissue of fat-1 

mice, suggesting that transgenic restoration of n-3 PUFAs promotes adipogenesis. In contrast, 

other study in mice demonstrated that a low dose of n-3 PUFAsadded to diet led to a 
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reduction in number of cells, which was responsible of a decrease in adipose tissue weight 

[83].  

Taking all these data together, it can be concluded that marine origin n-3 PUFAs may 

potentially modulate adipocyte size and number by regulating adipocyte differentiation and 

apoptosis. However, more studies are necessary to better clarify the mechanisms involved in 

these actions of n-3 PUFAs on adipocytes. 

3.2. Effects on lipid storage and mobilization  

Accumulation of triglycerides in adipocytes is settled by a balance between lipolysis and fatty 

acid oxidation (fat breakdown) and lipogenesis (fat synthesis). Triglycerides storage in 

adipocytes can be the result of dietary fatty acid (FA) uptake or de novo FA biosynthesis. This 

last process takes place mainly in liver and in a lower extent in adipose tissue, but recently it 

has been pointed out the importance of lipogenesis in adipose tissue as a possible strategy to 

combat obesity and diabetes conditions [84].  

N-3 PUFAs have been identified as modulators of lipogenic enzymes and thus, being able to 

regulate lipogenesis in WAT. Thus, both DHA and EPA  (100µM)decreased stearoyl-CoA 

desaturase (Scd)-1 gene expression and protein levels in 3T3-L1 cells [79,80]. In the same cell 

line, it has been found that EPA(150 µM, 48 h) decreased glycerol-3phosphate dehydrogenase 

another enzyme involved in lipogenesis[42]. In contrast, Guo et al. [74] did not find any 

significant change in lipogenesis in EPA-treated (100µM, 24 h)3T3-L1 adipocytes. However, 

a previous study of our group in primary cultured rat adipocytes evidenced a decrease in the 

percentage of glucose incorporated into triglycerides in EPA-treated (200µM, 96 h) cells, 

suggesting a decrease in lipogenesis[85]. The apparent differential outcomes among studies 

may be due to differences in culture characteristics (cell lines vs. primary adipocytes) as well 

as the doses tested and the duration of the treatments. 
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In addition to cultured adipocytes studies, some groups also found important features of 

marine origin n-3 PUFAs in animal models. For instance, a trial with rats fed with high 

sucrose diet revealed that fish oil supplementation for 2 weekssuppressed fatty acid synthase 

(Fas) mRNA levels in brown adipose tissue [86]. Furthermore, a study with Wistar rats 

demonstrated that Fas mRNA levels were lower in retroperitoneal adipose tissue of animals 

fed with a with a mixture of EPA and DHA (20%  of fat) or DHA-rich diet for 4 weeks [50].  

Moreover, adipose tissue specific PPARγ knockout mice showed a downregulation in Scd-1 

expression when a n-3 PUFAs concentrate containing 45%DHA, 14%EPA (replacing 15% of 

dietary lipids)was added to their diet  for 42 days[37]. Interestingly, Hiller et al. [87] found a 

downregulation of Fas, but not of Scd-1 mRNA levels in subcutaneous adipose tissue when 

German Holstein bulls were fed with increased levels of n-3 PUFAsup to 58.8% in their diet. 

In summary, the studies in animal models pointed out the importance of n-3 PUFAs in 

downregulatinglipogenic genes expression and therefore decreasing lipogenesis and fat 

accumulation. 

Lipoprotein lipase (LPL) is the primary enzyme responsible for chylomicron- and VLDL-TG 

lipolysis in endothelial cells of capillaries in adipose tissue, and therefore is considered as a 

master regulator for adipocyte fatty acid uptake from triglyceride-rich lipoprotein. It is 

thought, that n-3 PUFAs could modulate this enzyme. In this regard, Baltzell et al. [88] found 

decreased fat weight and adipose LPL in parallel to increased soleus muscle LPL and 

decreased plasma triacylglycerol in fish oil fed rats, suggesting a shift from fat deposition to 

oxidation. Nozaki et al. [89]also found that post-heparin LPL activity was lower at 60 min 

when fish oil (20 capsules day, containing 280mg of EPA and 120mg of DHA)was 

administered  to hypertriacylglycerolemic patientsfor 24 days. However, Harris et al. [90] 

showed an increase of LPL activity in healthy and hypertriacylglycerolemic patients after 

supplementation with a fish oil concentrate (5 g/day, containing 41% EPA and 23% DHA 
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during 4 weeks). Besides, other study demonstrated increased levels LPL activity in post-

heparin plasma of healthy males after 6 weeks of intervention with supplemented diet either 

with 6g of fish oil or six 1g capsules of EPA/DHA concentrate (EPAX 5500TG) [91], 

suggesting that the effect of n3- PUFAs to LPL activity may differ during time. 

Lipolysis is the main pathway involved in the breakdown of lipids in WAT. Lipolysis is a 

highly regulated process in which TG are hydrolyzed through the consecutive action of three 

major lipases: adipose triglyceride lipase (ATGL/desnutrin), hormone sensitive lipase (HSL) 

and monoacylglycerol lipase (MGL). Some lipid droplet proteins such as perilipin also play a 

key role in the lipolytic process. Thus, under basal conditions, perilipin A maintains a low rate 

of basal lipolysis by restricting the access of cytosolic lipases to the lipid droplet [92]. 

Several studies have reported the ability n-3 PUFAs to modulate lipolysis by acting on the 

main lipases and lipid droplets proteins. Some trials have suggested that DHA seems to 

promote lipid mobilization. Thus, DHA (50-200 µM) addition to fully differentiated 3T3-L1 

adipocytes increased basal lipolysis by inducing glycerol release [81]. Other authors also 

observed that DHA (100 µM)treatment increased lipolysis in 3T3-L1 cells by an up-

regulation of Atgl and a down-regulation of perilipin gene expression [80]. In the same 

adipocyte line, it has been found that treatment with EPA (100 µM) during the 7-days of 

adipocyte differentiation reduced lipid droplet size and increase Hsl gene expression [79].  

However, other assay found that the treatment of mature primary rat adipocytes with EPA 

(100-200µM) for 96 h decreased basal lipolysis [93]. In obesity, the increased levels of pro-

inflammatory cytokines secreted by adipose tissue are responsible of the upregulation of 

lipolysis observed in obese subjects, leading to increased circulating levels of free fatty acids 

(FFA), which interfere with insulin signaling in other tissues such as liver and skeletal muscle 

favoring the development of insulin resistance [94]. Interestingly, a previous study of our 

group found that EPA treatment is able to prevent the lipolytic effects of TNF-α in cultured 
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adipocytes in parallel with the reduction of both TNF-α induced NF-kB-DNA binding and 

phosphorylation of ERK1/2. EPA also reduced ATGL levels and induced phosphorylation of 

HSL in the serine565 residue, which prevent PKA-mediated activation of HSL [93] 

Regarding the effects of in vivo treatment with n-3 PUFAs on lipolytic enzymes, Sun et al. 

[71] found that DHA (6.25-12.5 g/kg, intragastric daily administration) for 3 weeks increased 

in a dose-dependent manner the gene expression of Hsland triglyceride hydrolase (Tgh) in 

adipose tissue of mice. Moreover, dietary supplementation with EPA to high-fat diet (HFD)-

fed rats is also able to regulate the expression levels of lipases in WAT. Hence, oral 

supplementation with EPA ethyl ester (1 g/kg) daily for 35 dayspartially reversed the down-

regulation of Hsl and Atgl mRNA observed in retroperitoneal fat of HFD-fed rats [93]. 

Moreover, several investigations have suggested that n-3 PUFAs may increase fatty acid 

oxidation in mitochondria and peroxisome. In this sense, EPA-treated (100µM, 24h) 3T3-L1 

adipocytes exhibited increased fatty acid β-oxidation [74] in parallel with a rise in carnitine 

palmitoyltransferase-1 (CPT-1A) activity[74]. Similar results have been reported in animal 

models. Flachs et al. [38] demonstrated that the addition of n-3 PUFAs to diet (6% 

EPA/51%DHA, replacing 44% of dietary fat for 4 weeks) in male C57BL/6J mice increased 

mRNA levels of Cpt1a in epididymal adipose tissue and acyl-CoA oxidase 1 (Acox1) in 

epididymal and dorsolumbar fat suggesting stimulation of fatty acid oxidation in these fat 

depots. 

 In summary, current evidences about marine origin n-3 PUFAs actions on adipocyte lipid 

metabolism suggest that these fatty acids orchestrate a modulation of different enzymes 

involves in metabolic pathways responsible for lipid storage and lipid breakdown and 

oxidation, facilitating the reduction of triglyceride accumulation in adipose tissue.  

3.3. Effects on mitochondrial biogenesis and adipose tissue browning  
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Several studies have pointed out to an association between adipose tissue mitochondrial 

dysfunction with the progress of obesity and type 2 diabetes [95]. In fact, a reduction in the 

abundance of adipocyte mitochondrial number and impaired mitochondrial function leads to 

reduced fatty acid β-oxidation facilitating fat accumulation and the development of obesity-

associated comorbidities such as insulin resistance and dyslipidemia [96]. Therefore, 

nutritional or pharmacological strategies to increase mitochondrial function and biogenesis 

could contribute to prevent or treat these metabolic disorders. 

Interestingly, some studies have suggested the ability of marine origin n-3 PUFAs to 

upregulate mitochondrial biogenesis in WAT. In this context, it has been described that n-3 

PUFAs(DHA and ALA, 200 µM for 24 h) increased mRNA levels of peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (Pgc-1α)andnuclear respiratory factor 1 

(Nrf1),which aretwo transcription factors that are particularly important for mitochondrial 

biogenesis in cultured 3T3-L1 adipocytes [38]. In addition, a recent study have revealed the 

capacity of EPA (200 µM) to not only induce mitochondrial DNA content and the expression 

of genes involved in mitochondrial biogenesis (PGC1α, Nrf1 and COXiv), but also to increase 

Ucp1, Ucp2, Ucp3 and Cidea mRNA during differentiation of adipocytes from stroma 

vascular cells of inguinal fat, suggesting that EPA promotes browning of inguinal fat 

adipocytes. Importantly, this effect was not found when EPA (200 µMfor 24 h)was added to 

mature inguinal adipocytes, suggesting that EPA exerts the browning effects via recruiting 

brite adipocytes [97]. 

Importantly, Flachs et al. [38] evidenced that supplementation of HFD with an EPA/DHA 

concentrate (6% EPA/51%DHA, replacing 44% of dietary fat) for 4 

weeksupregulatedPGC1αand Nrf1and also genes encoding for mitochondrial proteins 

involved in oxidative phosphorylation, in addition to an increase of mitochondrial SDHA, 

MT-CO1, COX6 and ATP5A1 protein levels in epididymal fat. Further studies of the same 
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group have demonstrated that a combination treatment of marine origin n-3 PUFAs (46% 

DHA, 14% EPA, replacing 15% of dietary lipids)and mild caloric restriction for 5 weeks had 

synergistic actions in the prevention of obesity and related metabolic disturbances such as 

inflammation and insulin resistance in parallel with a synergistic induction of mitochondrial 

oxidative phosphorylation (OXPHOS) and FFA oxidation, specifically in epididymal WAT. 

Interestingly, these changes occurred without induction of UCP1 [56]. In support of this 

finding, the study of Janovska et al. [49] showed that the anti-obesity effects of marine origin 

n-3 PUFAs (46%DHA, 14%EPA, replacing 15% of dietary lipids) in mice fed HFD for 7 

months were independent of cold-induced thermogenesis. Taking together these observations, 

it was suggested that n-3 PUFAsare able to promote mitochondrial biogenesis and oxidative 

capacity in WAT independently of UCP1 [56].  

Also, n-3 PUFAs have been shown to increase brown adipose tissue mitochondrial mass and 

induce a marked stimulation of BAT thermogenic activity without changes in the UCP 

content. Interestingly, a synergistic effect of EPA and DHA (27.5 g/100 gdiet for 4 weeks) 

was found [98]. However, other study found that fish-oil enriched diet (200 g/kg diet for 21 

days) increased Ucp1 mRNA levels in brown adipose tissue in rats [99]. 

Further studies are needed to better characterize the potential brightening properties of marine 

origin n-3 PUFAs in vivo and especially in human adipose tissue.  

3.4. Effects on Glucose metabolism and insulin signaling 

Dysfunctional WAT expansion in obesity with concomitant immune cells mobilization leads 

to the activation of inflammatory cascades that have an adverse impact on insulin signaling 

and glucose uptake, favoring the development of insulin resistance [100]. Insulin binds its cell 

surface receptor (IR) leading to the phosphorylation of IRS proteins (IRS-1 and IRS-2) on 

tyrosine residues and starts a downstream cascade. Proteins such as phosphatidylinositol3-

kinase (PI3K) and AKT play essential roles along this signaling pathway promoting a wide 
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range of biological responses including glucose transporter (GLUT) 4 translocation to the 

plasma membrane or glycogen synthesis [101]. 

While several studies in animal models have largely suggested that n-3 PUFAs may have 

insulin sensitizing properties, the underlying mechanisms are not completely understood yet. 

Accumulating evidence shows that marine origin n-3 PUFAs may improve insulin signal 

transduction in adipocytes, affecting in turn, the insulin-stimulated glucose uptake through to 

regulation of the expression or the translocation of the insulin-dependent glucose transporter 

GLUT4 [55,102,103]. 

Interestingly, it has been reported that adipocytes from n-3 PUFAs-depleted rats had lower 

basal and insulin-stimulated glucose incorporation [104] suggesting a role of n-3 PUFAs in 

the regulation of glucose uptake by adipocytes. In vitro investigations carried out in cultured 

adipocytes demonstrated that treatment with EPA (200 M, 96 h) increased glucose uptake in 

primary rat adipocytes [85]. Moreover, cultured adipocytes from rats supplemented with fish 

oil for a week reported increased levels of GLUT4and GLUT1 with concomitant promotion 

of insulin-stimulated glucose uptake [105].  

An upregulation of Glut4in adipose tissue has been also reported in high sucrose diet (HSD)-

insulin resistant ratsfed with fish oil (14% of lipids replacement) for 3 weeks [106]. Similarly, 

an increase in adipose Glut4was observed  in HFD-induced obese rats fed with n-3 PUFAs 

(19% of fat from fish oil) for 4 weeks, accompanied with lower glycaemia and insulinemia 

levels despite the expression of the regulatory subunit (p85) of PI3K remained 

unchanged[102]. Furthermore, a longer administration (4 months) of marine origin n-3 

PUFAs (EPA and DHA, 45–64% respectively, replacing 15 or 44% of lipids) was also found 

to enhance glucose transport via Glut4 expression in both epididymal and dorsolumbar depots 

of HFD-fed mice[83]. González-Periz et al. [55]alsoreportedthatfeedingwith a marine origin 

n-3 PUFAs-enricheddiet(6% of total lipidcontent) during 5 weeksimprovedinsulinresistance 
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in associationwithanincreasedexpression of Irs-1 and Glut4mRNA in adiposetissue of 

geneticallyobeseob/obmice. Nevertheless, other authors reported only slight effects on Glut4 

expression in adipose tissue (while a significant upregulation was found in skeletal muscle) 

after 9 weeks of treatment with EPA (0.5 g/kg body weight), in association with a higher 

glucose tolerance and lower insulinemia in spontaneous diabetic rats[54]. In contrast, Gillam 

et al.[52] found no effects on Glut4 and IR mRNA levels in adipose tissue of  fa/faZucker rats 

given 10% of fat in the form of fish (menhaden) oil for 8.5 weeks. LeFoll et al. [107] 

observed no beneficial effects of fish oil(4.9% of metabolizable energy from fat) for 4 weeks 

on dexamethasone-induced insulin resistant rats. In fact, WAT PI3K activity was decreased in 

the supplemented group of both, dexamethasone treated and control rats, and 

GLUT4proteinlevels remained unchanged. However, Akt phosphorylation was increased in n-

3 PUFAs supplemented control rats suggesting adissociation between the effects of n-3 

PUFAs on PI3K activity and Akt phosphorylation. As the authors pointed out, the lack of 

larger results could be due to an excessive dose of dexamethasone.   

In conclusion, these data support that marine origin n-3 PUFAs can modulate glucose uptake 

and insulin response in adipose tissue, through different mechanisms. In this context, it is 

important to mention that n-3 PUFAs can change fatty acid content of the membrane 

phospholipids, increasing its insaturation[108–110], which could also mediate its effects on 

insulin signaling [110]. In addition, n-3 PUFAs can also influence the so-called adipokines 

released by adipose tissue which has an impact on inflammatory status and insulin sensitivity 

in obesity-related comorbidities (reviewed in the next section). However, further research is 

needed to deepen in the understanding of n-3 PUFAs actions on glucose homeostasis.  

3.5. Effects on adipokines production 

Accumulating evidence suggests that marine origin n-3 PUFAs can counteract the adipokine 

dysregulation that occurs in obesity [15,111]. Along this review, we will provide an overview 



20 
 

of the current knowledge in the regulation by n-3 PUFAs of some adipokines with key roles 

in energy homeostasis as well as in glucose and lipid metabolism such as adiponectin, leptin 

and apelin.  

Adiponectin 

Adiponectin is an important insulin-sensitizing adipokine that regulates glucose and lipid 

metabolism reducing fat storage (lipogenesis) and promoting fat utilization (fatty acid 

oxidation). Moreover, adiponectin stimulates mitochondrial biogenesis and has important 

anti-inflammatory properties. These actions of adiponectin are in part mediated through the 

activation of PPARγ and AMPK[112]. It is well documented that adiponectin levels are 

reduced in subjects with obesity, which may contribute to the development of insulin 

resistance and cardiovascular disorders [113].  

Several studies have suggested that n-3 PUFAs are regulators of adiponectin production by 

adipocytes. Thus, the study of Oster et al. [114] in 3T3-L1 adipocytes revealed that only DHA 

(125 M, 24 h), but not EPA was able to induce adiponectin gene expression and protein 

secretion. More recently, it has been found that treatment with EPA (100 M) and DHA (50 

M) for 48 hincreased adiponectin only in 3T3-L1 adipocytes at early stage of maturation (8 

days after induction of differentiation), while no significant effects were observed when 

adipocytes were treated with these n-3 PUFAs in later stages (12 and 16 days) post-induction 

of differentiation[115]. On the other hand, Lorente-Cebrián et al. [116] showed that a long-

term treatment with EPA (200 M, 96 h) of primary cultured rat adipocytes decreased 

adiponectin expression and secretion as well as PPAR-γ mRNA levels. However, studies in 

human adipocytes found that EPA (100 M) and DHA (100 M) treatment for 48 h increases 

adiponectin secretion, although only EPA led to higher cellular adiponectin levels into the 

adipocytes [117]. Altogether, these findings suggest that the regulation of adiponectin by n-3 
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PUFAs is dose and time-dependent and that can be affected by the maturation stage of the 

adipocytes.  

Moreover,the differential effects of EPA and DHA observed in some studies highlights the 

need of studying their actions separately and in different models.  

A growing body of evidence indicates that in vivomarine origin n-3 PUFAs treatment leads to 

an upregulation of adiponectin (circulating levels and/or adipose mRNA) in both rodents 

[55,72,118] and humans [119,120]. In this sense, replacement of dietary lipids (6-15%) in the 

form of n-3 PUFAs concentrate for 5 weeks increased adiponectin circulating levels in HFD-

fed mice [118] and adiponectin expression in both, HFD-fed mice [118] and ob/ob mice [55]. 

These results are in agreement with Tishinsky et al. [121], who reported that the HFD-induced 

adiponectin decrease in visceral adipose tissue of rats was prevented by replacing 15% of total 

kcal with marine origin n-3 PUFAs for 4 weeks. There are also results from rat studies that 

found how intragastric administration of n-3 PUFAs (1 g/day) for a period of 20 weeks 

increased adiponectin levels and mRNA in WAT and serum levels of HFD-fed Sprague-

Dawley rats [122].A previous study of our group also indicated that treatment of Wistar rats 

with a similar dose of EPA (1 g/day) for 5 weeks caused an upregulation of adiponectin in 

adipose tissue [48].  

Given all these data, the ability of marine origin n-3 PUFAs to stimulate adiponectin has been 

proposed to be involved in the beneficial actions of n-3 PUFAs on insulin sensitivity, fatty 

acid oxidation and inflammation, among others [123]. 

Leptin 

Other widely studied adipokine with important metabolic functions is leptin. It is well 

recognized that leptin plays a key role in the regulation of food intake and appetite[124], 

energy expenditure, insulin signaling [125], as well as on the reproductive [126] and immune 

system[127].  Moreover, leptin is known to have proinflammatory effects given its ability to 
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up-regulate the immune response and the secretion of proinflammatory cytokines, such as 

TNF-α and IL-6 [128,129]. 

Regarding leptin’s roles in body weight regulation, it is well demonstrated that leptin 

deficiency causes severe hyperphagia and early-onset obesity[130]. In spite of its critical role 

on food intake and body weight, hyperleptinemia is a common consequence of obesity in 

humans and rodents suggesting the presence of a resistance process that may be involved in 

the disturbance of body weight regulation[131].  

There is evidence of the ability of dietary n-3 PUFAs to regulate leptin production in vitro and 

in vivo. Some assays in cultured adipocytes have observed that EPA (10, 100 and 1000 M, 

24 h) induces leptin expression in 3T3-L1 [132] and primary rat adipocytes (10, 100, and 200 

μM, 96 h), which may be triggered by increasing the oxidative metabolism of glucose [85]. In 

addition, it has been reported differential effects of EPA and DHA (100 M and 50 M 

respectively, 48 h) on leptin expression of 3T3-L1 adipocytes, being EPA a stimulant of leptin 

while DHA did not have any significant effect [115].  

Regarding studies in animal models of obesity treated with n-3 PUFAs, the outcomes about 

leptin are apparently controversial. In a recent publication, HFD-stimulated leptin expression 

in adipose tissue was reversed by intragastric administration of marine origin n-3 PUFAs (1 

g/day, 20 weeks) although differences in serum levels did not reach statistical significance, 

suggesting that variations of adipokine expression possibly precede modifications in serum 

levels [122]. A decrease in both leptin expression and circulating levels has been also 

observed after fish oil (8.6% of fat composition in form of EPA and 43.8% DHA) 

supplementation in combination with 4% of taurine as an adjuvant for 4 weeks in 

obese/diabetic KK-Ay mice[133]. Similar outcomes have been observed in other trials [15], 

suggesting that the decrease in adipose tissue leptin could be secondary to the reduction of fat 

pad size observed in n-3 PUFAs-supplemented groups.  
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In contrast, there are some studies that found a positive regulation of leptin expression by n-3 

PUFAs. In this sense, Pérez-Matute et al. [48]reported that a 35 days-treatment with highly 

purified EPA (1 g/kg) significantly increased leptin circulating levels in overweight rats while 

significantly decreased in lean rats.  These results correlate with Peyron-Caso et al. [40] and 

Rossi et al. [53], which also observed positive regulation of leptin after dietary 

supplementation with marine origin n-3 PUFAs (replacing 14% of lipids with fish oil for 3 

weeks or replacing the source of fat with 7 g of cod liver oil/100 g for 2 months, respectively). 

The differential outcomes between studies may rely on differences in the physiological state 

of the animals and the type, dose and duration of treatments [15]. 

Concerning human studies, a recent meta-analysis showed that supplementation with n-3 

PUFAs from marine sources could moderately reduce leptin plasma levels in non-obese, but 

not in obese subjects[134]. Indeed, n-3 PUFAs associated increases in leptin levels have been 

observed in obese subjects[135]. In this context, a recent study of our group has found that 

EPA supplementation (1300 mg/day, 10 weeks) prevents the fall of leptin during weight loss 

in overweight/obese women, suggesting that EPA could contribute to prevent weight regain in 

healthy weight-reduced subjects[136]. Taken together, these data highlight the relevance of 

the dose and duration of the treatment as well as the composition of the dietary fish oil and the 

metabolic state of the subjects on leptin production.  

Apelin 

Apelin is an adipokine with potential anti-diabetic, anti-obesity and cardioprotective 

properties [137]. Apelin circulating levels have been observed to be upregulated in 

hyperinsulinemic obese subjects [138]. However, it has been proposed that apelin could be a 

protective mechanism against type 2 diabetes development [139]. In fact, apelin treatment 

decreased body adiposity and increased energy expenditure through the upregulation of UCP1 

in brown adipose tissue in mice [140]. Moreover, apelin administration to obese and insulin-
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resistant mice also restored glucose tolerance and insulin sensitivity by modifying serum 

levels of adiponectin, insulin and TG in DIO mice [140,141].  Furthermore, apelin activates 

AMPK leading to enhanced skeletal muscle mitochondrial biogenesis, complete fatty acid 

oxidation and insulin-stimulated glucose uptake[142]. 

Treatment with EPA has been seen to exert modulatory effects of apelin both, in vitro and in 

vivo. For instance, EPA treatment (100M, 24 h) stimulatesapelin production in cultured 

adipocytes [143] and myocytes [41]. A previous study of our group found that EPA 

supplementation (1 g/kg for 35 days) in HFD-fed rats increasesapelin mRNA in adipose tissue 

and suggested that the insulin-sensitizing effects of EPA in rodents could be associated to its 

stimulatory effect on apelin[144]. EPA supplementation (36 g/kg EPA, 10 weeks) also up-

regulatesapelin in soleous muscle of HFD-fed mice [41].  

In summary, all these data sheds light into the modulatory role of marine origin n-3 PUFAs 

on the production of key adipokinesby adipose tissue, which may mediate in part the 

beneficial effects of these fatty acids on glucose and lipid metabolism and contribute to 

manage inflammatory status of adipose tissue.  

 

3.6. Role of PPARs and AMPK in the actions of n-3 PUFAs in adipose tissue 

N-3 PUFAs are naturally occurring ligands of a family of transcription factors called 

peroxisome proliferator-activated receptor (PPARs), which have been largely proposed as 

mediators of the actions of these fatty acids.   

In this context, n-3 PUFAs are known to activate PPAR, which is abundantly present in 

mammalian liver[145]. The activation of this nuclear receptor triggers the expression of key 

genes involved in lipid metabolism that promote fat catabolism[145]. Fish oil has been also 

shown to modulate the expression of sterol regulatory element binding protein-1 

(SREBP1)[146,147] with concomitant decreases of cholesterologenic and lipogenic enzymes 



25 
 

expression. On the other hand, PPARγis mainly expressed in adipose tissue, where it is 

known to induce differentiation of preadipocytes and triglyceride storage by activating a great 

number of genes involved in adipogenesis and fatty acid transport, storage and oxidation 

[145]. This nuclear receptor has been proved to bind fatty acids and lipid-derived substrates as 

well as Thiazolidinediones (TZDs)[145], which have been utilized as hypoglycemic and 

muscle insulin-sensitizing drugs in type 2 diabetes. In mature adipocytes, ligand activation of 

PPARγinduces the expression of a number of genes involved in glucose and lipid metabolism, 

improving insulin sensitivity and promoting fatty acid oxidation. Moreover, this transcription 

factor participates in the modulation of adipocytokines production. 

Oster et al. [114] found that DHA, but not EPA (125 µM, 24 h) led to increased expression of 

Pparγ, while both stimulate adiponectinin 3T3-L1 adipocytes. Moreover, treatment with 

BADGE, a PPARγ antagonist, inhibited the stimulatory effect of DHA on adiponectin, but did 

not affect EPA action on this adipokine, suggesting that EPA stimulatory effects on 

adiponectin production may be given through a Pparγ-independent mechanism. Studies from 

our group have reported decreased Pparγexpression after chronic treatment with EPA (100-

200 µM, 96h) of cultured rat adipocytes [116].  

Regarding the effects of n-3 PUFAs supplementation on PPARγ in rodents, González-Périz et 

al. [55] observed an upregulation of PparγmRNA levels in WAT of mice fed with a diet 

enriched in marine origin n-3 PUFAs (replacement of 6% total lipids, 5 weeks) accompanying 

the improvement in insulin sensitivity, adiponectin and decrease of inflammation. Neschen et 

al. [148]found a PPARγ dependent upregulation of adiponectin by n-3 PUFAs-rich fish oil 

(59% of fat-derived calories, 15 days) in mice epididymal adipose tissue, independently of 

PPAR. However, studies from our group have reported decreased Pparγexpression after 

supplementation with EPA ethyl ester (1 g/kg, 35 days)[48].Taken together, the in vitro and in 
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vivo data suggest potential differential effects of EPA and DHA on PPARγ, which deserves 

further investigation. 

Moreover, supplementation with n-3 PUFAs (3 g/day, 944 mg EPA and 2.088 DHA for 12 

weeks) has been associated with a downregulated expression of PPARγin adipose tissue of 

obese adolescents[149]. 

Activation of AMPK phosphorylation has also been implicated in the effects of n-3 PUFAs. 

This heterotrimeric protein acts as an energy sensing enzyme stimulating those signaling 

pathways that increase energy production (i.e. glucose transport or fatty acid oxidation) and 

switching off energy-consuming pathways (lipogenesis, protein synthesis, gluconeogenesis). 

Therefore, AMPK activation has important regulatory effects of glucose and lipid metabolism 

in key organs including liver, skeletal muscle, adipose tissue and pancreas[150]. For example, 

AMPK seems to be necessary for the preservation of hepatic insulin sensitivity by n-3 

PUFAs[151].  

A study from our group showed that EPA (100-200 µM, 24 h) stimulated AMPK activation in 

3T3-L1 adipocytes, and interestingly it was demonstrated that AMPK activation is involved 

in the stimulatory action of EPA on visfatin production by adipocytes [143]. It was also 

suggested that AMPK activation is involved in the ability of EPA to prevent the lipolytic 

effects of the pro-inflammatory cytokine TNF-α in adipocytes [81]. Furthermore, several 

studies have reported AMPK activation in WAT after supplementation with marine origin n-3 

PUFAs. For instance, Kopecky et al. [73] found an elevation of phosphorylated AMPK levels 

in DIO mice fed with n-3 PUFAs (44% of lipids replacement, 5 weeks).  Moreover, 

González-Périz et al.[55]foundthat DHA treatmentstimulated AMPK phosphorylationin WAT 

of ob/obmice in paralleltoanimprovement in insulinsensitivity and theupregulation of insulin 

receptor signaling (IRS-1 and IRS-2).  

3.7. Effectson adipose tissue inflammation  
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A growing body of evidence supports that marine origin n-3 PUFAs may ameliorate adipose 

tissue inflammation both in obese rodents and humans [42,152,153]. Several mechanisms 

have been proposed for the anti-inflammatory actions of n-3 PUFAs on WAT: (a) Reducing 

the production of pro-inflammatory adipocytokines and increasing the release of anti-

inflammatory adipocytokines from adipose tissue; (b) Decreasing macrophage infiltration; (c) 

Reducing the formation of n-6 derived pro-inflammatory lipid mediators; (d) Being substrates 

for the formation of pro-resolutive lipid mediators.  

(a) Modulation of cytokines, chemokines and adipokines production patterns 

Strong scientific support exists about that marine origin n-3 PUFAs may alleviate adipocyte 

dysregulation and the subsequent inflammation by promoting the production of anti-

inflammatory adipose-released substances, including adiponectin or IL-10, and down-

regulating the secretion of the pro-inflammatory adipocytokines and chemokines including 

MCP-1, IL-6 or resistin[42,54,111]. 

Studies in cultured adipocytes indicate the ability of n-3 PUFAs to downregulate the 

production of pro-inflammatory molecules. For instance, the administration of EPA (150 M) 

to 3T3-L1 adipocytes significantly decreases the secretion of IL-6 and increases adiponectin 

levels after 48 h of treatment [42].  

Animal studies also reveal this modulatory capacity of the production of pro and anti-

inflammatoryadipokines. In this sense, Rossmeisl et al. [47] reported a decrease in Mcp-1 and 

an increase in adiponectin expression in WAT after 4 months HFD-feeding period followed 

by 9 weeks of supplementation with DHA and EPA (30 g/kg of diet) in mice.  Interestingly, 

Ding et al. [122] has recently shown that marine origin n-3 PUFAs intragastric administration 

(1 g/day for 20 weeks) decreased resistin and leptin and increased adiponectin protein levels 

in adipose tissue. However, Gonzalez-Périz et al. [55] did not observe any effect on Mcp-1, Il-
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6 or Tnf- mRNA in adipose tissue of ob/ob mice supplemented 6% of total lipids of diet with 

n-3 PUFAs for 5 weeks, although adiponectin expression was also significantly increased.  

In DIO mice a 20-weeks replacement of 5% of fat in the form of EPA decreased MCP-1 

expression in adipose tissue and leptin serum levels while plasma adiponectin was 

increased[44]. In fact, diet supplementation with EPA (0.5 g/kg) for 4 weeks resulted in a 

decreased expression of Il-6 in adipose tissue of spontaneous diabetic rats[54].  Thisis in 

concordance with the study of Kalupahana et al.[42]showing that the replacement of dietary 

fat with EPA (36g/kg of diet for 11 weeks) reduced MCP-1 and PAI-1 in gonadal fat despite 

there was no change in serum levels of these proteins. In the same way, previous studies of 

our group reported that administration of EPA-ethyl ester to DIO rats (1g/kg, 35 days) 

decreased Tnf- and Il-6 mRNA expression in WAT in parallel with an increase in 

adiponectin gene expression [48,154]. 

Furthermore, in the epididymal adipose tissue of fat-1 transgenic male mice, it has been 

observed a reduction in the levels of some pro-inflammatory cytokines (MCP-1, RANTES, 

IL-1β, IL-2 and IL-6), in parallel with a decrease in either the percent of F4/80+ cells or the 

crown-like structures cells [60]. In concordance with these observations, other study using the 

same animal model and in the same fat depot reported positive changes in the expression of 

some genes associated with inflammation processes, decreasing Mcp-1 and increasing genes 

linked with anti-inflammatory actions [62] (see Table 2). 

All this data reveal that the anti-inflammatory actions of n-3 PUFAsare in part mediated by 

the modulation of the production of adipocytokines, and that more research is needed to 

further understand the effects of n-3 PUFAs on adipose tissue secretion.  

(b) Reduction of M1 macrophages infiltration and promotion of switch to M2 

As explained before, obesity courses with increased levels of macrophages infiltration to 

WAT. Several studies have demonstrated the capacity of n-3 PUFAs to decrease macrophages 
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infiltration and to promote the switch from M1 phenotype to M2. In this way, DHA (200 µM, 

9 h) also raised mRNA levels of the main M2 phenotype indicators as Cd36, Il-10, andTgfβin 

RAW264.7 cells [155]. Additionally, the study of Todoric et al. [51] found downregulated 

expression of MCP-1 and markers related with macrophage infiltration as Msr1, Il1rn and 

CD14 in WAT ofHFD-fed db/db mice fed with a diet enriched inmarine origin n-3 PUFAs 

(40% of oil volume being replaced by a concentrate of highly purified n-3 PUFA EPA and 

DHA re-esterified to triglyceride). Titos et al. [156] reported that DHA (4 g/g i.p. for 10 

days) did not change the number of adipose tissue macrophages, but promoted a phenotyping 

switch in macrophage polarization toward an M2-like phenotype in HFD-fed obese mice. 

 It is important to mention that the study of Oh et al. [157] identified that GPR120 is an n-3 

PUFAs receptor mediating their potent anti-inflammatory and insulin-sensitizing effects in 

mice. In fact, n-3 PUFAs were not able to reduce inflammation and macrophages infiltration 

when administered to GPR120 knockout mice. Therefore, these findings suggest the key role 

of GPR120 as mediator of n-3 PUFAs anti-inflammatory actions.  

Studies in fat-1 transgenic mice have strengthened the previous information, observinga drop 

in the macrophage migration markers into the adipose tissue of these mice as compared with 

the matched wild type group fed with a HFD [158], together with an induction of a 

phenotypic shift from the pro-inflammatory M1 macrophages to the anti-inflammatory M2 

macrophages [61,62](see Table 2). 

In parallel with cultured adipocytes models, the study of Itariu et al. [159] performed in 

severely obese non-diabetic patients also found that supplementation with 3.36 g/day of 

highly purified EPA and DHA for 8 weeks decreased the expression of inflammatory markers 

related with macrophage signaling into adipose tissue and down-regulated the expression of 

the CD140 M1 macrophage marker but only in subcutaneous adipose tissue without effect in 

visceral fat. 
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(c) Reduction of n-6 PUFAs- derived proinflammatory lipid mediators  

In adipose tissue, another switch occurs when n-3 PUFAs are increased. In fact, treatment 

with n-3 PUFAs may reduce the formation of pro-inflammatory lipid mediators derived from 

n-6 PUFAs such as leukotrienes and prostaglandins derived from Arachidonic acid. It has 

been proved that EPA and DHA modulate the utilization of Arachidonic acid [160], and a 

competitive inhibition of the production of n-6 PUFAs lipid mediators by n-3 PUFAs seems 

to take place [153,160,161]. DHA is able to inhibit the production of prostaglandins (PG) also 

by a strong competition for PG synthetase, an enzyme responsible to produce prostaglandins 

[162]. Interestingly, the study of González-Périz et al. [55] found that marine origin n-3 

PUFAs dietary enrichment reduced the formation of n-6 PUFAs-derived proinflammatory 

mediators such as PGE2, PGF2α, TXB2, 5-HETE, 12-HETE and 15-HETE in adipose tissue of 

ob/ob mice.  This mechanism could reduce the inflammation in adipose tissue, and help to the 

resolution of the low-grade inflammation that is established in obesity and metabolic 

complications.  

(d) Constitute substrates for the formation of pro-resolutive lipid mediators 

Serhanand collaborators discovered that n-3PUFAs serve as substrates for the formation of 

specialized proresolving lipid mediators (SPMs)[163–165]. EPA-derived SPMs are known as 

E-series Resolvins (RvE1-3) and DHA-derived lipid mediators are named as D-series 

Resolvins (RvD1-6), (Neuro)Protectins (NPD1) and Maresins (MaR1-2)[166](see Figure 1). 

These novel bioactive compounds exert potent anti-inflammatory and pro-resolutive actions 

in acute and chronic inflammation helping to restore tissue homeostasis[166,167]. It is 

important to highlight that unlike their precursors (DHA and EPA), these SPMs exert potent 

actions at picomolar to nanomolar range.  
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Interestingly, Claria et al.[168] using a metabolo-lipidomics approach detected a range of 

these SPMs in human subcutaneous adipose tissue, such as RvD1, RvD2, PD1, lipoxin (LX) 

A4, and the monohydroxy biosynthetic pathway markers of RvD1 and PD1 (17-HDHA), 

RvE1 (18-HEPE), and maresin 1 (14-HDHA). Importantly, it has been identified that obesity 

is accompanied by an impaired adipose tissue local production of some proresolving lipid 

mediators[169,170]. Neuhofer et al.[170]also found that adipose tissue reduction of 17-

HDHA and PD1 represents one of the earliest alterations in diet-induced inflammation.  

Several studies have revealed that dietary marine origin n-3 PUFAssupplementationpromoted 

an increment of the synthesis of n-3 PUFA–derived SPMs and their precursors in adipose 

tissue of obese mice[55,170]. Interestingly, treatment withhighly purifiedn-3 PUFAs (3.36 

g/day for 8 weeks) to severely obese-nondiabetic patients significantly increased the 

production of some n-3 PUFAs-derived SPMs, including RvE1, 17-HDHA, PD1, and RvD1 

in visceral adipose tissue in parallel with the reduction of adipose tissue and systemic 

inflammation[159]. 

 

4. Effects of n-3 PUFAs-derived SPMs administration in obesity and 

MetS 

Recently, some research groups have focused on analyzing the capacity of some SPMs to 

improve adipose tissue inflammation in obesity and their associated metabolic 

complications[152,171].Table 3 summarizes the studies in animal modelsof obesity and 

related disorders treated with different n-3 PUFAs-derived SPMs. 

González-Périz et al.[55]showed that treatment with RvE1 and PD1 toob/ob mice mimicked 

the beneficial actions of n-3 PUFAs supplementation. Thus, RvE1 was able to attenuate 

hepatic steatosis and upregulated mRNAlevels of adiponectin, Glut4, Irs1, Pparγ as well as 

AMPK phosphorylation in adipose tissue. Interestingly, PD1 increased adiponectin 
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expression in adipose tissue explants of ob/ob mice.Furthermore, RvD1 has revealed to have 

beneficial effects on inflammatory processes, adipokine secretion, and insulin sensitivity in 

both, diet-induced and genetically obese mice[156,169,172,173].Thus, Hellman et 

al.[173]found that RvD1 improved glucose tolerance, decreased fasting blood glucose, 

increased adiponectin, and in WAT promoted Akt and AMPK activation,while decreased the 

expression of pro-inflammatory adipokines such as IL-6. In addition, a decrease in crown-like 

structures rich in inflammatory F4/80+CD11c+ macrophages and an increase in F4/80+ cells 

expressing MGL-1 was found, supporting arise in the ratio M2:M1 adipose tissue 

macrophages in RvD1-treated db/db mice. 

In agreement with these results, Titos et al.[156]showed that treatment of macrophages with 

RvD1 downregulated pro-inflammatory cytokines complementary to an increase of M2 

markers such as Ym1 and arginase-1. In this sense, a promotion of the switch in macrophage 

polarization toward an M2-like phenotype and nonphlogistic phagocytosis in adipose tissue 

was described. This group also reported that ex vivo treatment of inflamed obese adipose 

tissue explants with RvD1 and RvD2 attenuated in a dose-dependent manner the impaired 

expression and secretion of adiponectin and also decreased the levels of 

proinflammatoryadipokinessuch asleptin, TNF-α, IL-6, and IL-1β. Moreover, RvD1 and 

RvD2 reduced MCP-1 and leukotriene B₄-stimulated monocyte adhesion to adipocytes and 

their transadipose migration[169]. Recently, it has been reported that RvD1 promoted the 

resolution process initiated by calorie restriction in obesity-induced steatohepatitis[172]. 

Neuhofer et al.[170]found that treatment of db/db mice with the n-3 docosanoid lipid 

mediator 17-HDHA reducedadipose tissue expression of inflammatory cytokines (such as 

MCP-1, TNF-α, IL-6 and osteopontin) and increased adiponectin levels, in parallel with an 

improvement of insulin sensitivity and glucose tolerance.  
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The recent study of White et al.[174]demonstrated that Protectin DX (PDX) has 

importantinsulin-sensitizing and glucoregulatoryactions by selectively stimulating the release 

of the myokine IL-6 from skeletal muscle and initiating a myokine-liver signaling axis. PDX 

treatment also increased AMPK phosphorylation in muscle, but did not have any impact on 

adipose tissue inflammation in obese diabetic db/db mice. 

 

Conclusions 

Obesity leads to several chronic morbidities including type 2 diabetes, dyslipidaemia, 

atherosclerosis and hypertension, which are major components of MetS. Low-grade 

inflammation has been identified as a key factor in the development of MetS features 

affecting obese subjects. WAT metabolism and WAT-derived factors (fatty acids and 

adipokines) play an important role in the development of these metabolic disturbances. In 

obesity, the expanding WAT makes a substantial contribution to the development of 

inflammation via increased secretion of pro-inflammatory cytokines, chemokines and 

adipokines and the reduction of anti-inflammatory adipokines. The state of chronic low-grade 

inflammation is powerfully amplified through the infiltration of macrophages into WAT. This 

dysregulated situation primarily initiated within WAT can affect the function of other 

metabolic organs, including liver, muscle and pancreas. These adverse facts highlight the 

importanceof finding effective nutritional or pharmacological strategies for preventing or 

attenuating the adipose tissue inflammation and associated dysfunctions that accompany 

obesity. Growing evidence exits about the role of WAT in mediating the beneficial effects 

ofmarine n-3 PUFAsin obesity-associated metabolic disorders. Figure 2 summarizes the 

mechanisms by which marine origin n-3 PUFAs control adipose tissue metabolism and 

function. N-3 PUFAs have been shown to modulate adipocyte number by regulating 

adipocyte proliferation and differentiation as well as apoptosis. Moreover, n-3 PUFAs also 
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regulates pathways controlling fat storage and fat mobilization, decreasing lipid accumulation 

processes and favoring adipocyte oxidative metabolism by promoting mitochondrial 

biogenesis and fatty acid oxidation.In addition, EPA and DHA are also capable of modulate 

adipocyte insulin sensitivity and glucose utilization. These n-3 PUFAs actions have been 

related in part to their ability to stimulate PPARγ and AMPK activation. Further studies are 

needed to better characterize the potential britening actions of n-3 PUFAs on WAT. 

Importantly, marine origin n-3 PUFAs can mitigate adipose tissue inflammation by restoring 

the dysfunctional proinflammatory secretory pattern of hypertrophied adipocytes, and 

specially by promoting the formation of important proresolutive lipid mediators such as 

resolvins, protectins and maresins.Most of these findings have been observed in animal and 

cell culture models and, there is still few clinical trials addressing if these actions occur also 

in human adipose tissue after n-3 PUFAs supplementation. Therefore, there is a need of 

performing clinical trials in humans aiming to establish the more effective n-3 PUFAs doses 

and formulations to counteract adipose tissue dysfunction and reverse clinical metabolic 

disturbances in subjects with obesity and metabolic syndrome. 
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Table 1. Effects of marine n-3 PUFAs on obesity and MetS features in animal models 

Animal model  Treatment Duration Metabolic 
outcomes 

Study 

Male mice (aP2-Cre-ERT2 

PPARγL2/L2) fed HFD 
Corn oil-based HFD with LC n-3 PUFAs 
concentrate replacing 15% (wt/wt) of dietary 
lipids. 

42 days Body weight 
Epididymal fat  
Subcutaneous fat  

[37] 

Male Wistar rats fed a 
sucrose-rich diet 

Fish oil (7 g/100 g of fish oil plus 1 g/100 g of 
corn oil)  replacing the source of fat diet  

60 days Body weight 
Epididymal Fat 
Retroperitoneal fat 
FFA  
TG 
Glucose  
Insulin 

[39] 

Male Wistar rats fed with 
HFD 

Native fish oil (200 g/kg diet), ethyl ester of EPA 
or DHA or as a mixture of ethylesters of these 
two fatty acids 

4 weeks Body weight 
NEFA 
TG 
Insulin 
 

[50] 

Male C57BL/6N mice fed 
HFD 

6% of EPA and 51% of DHA (EPAX 1050) 
replacing 44% of dietary fat 

 

4 weeks Body weight 
Epididymal Fat 

[38] 

n-3 PUFAs deprivation for 2 weeks followed by  
5 weeks EPAX 1050 replacing 15% of dietary 
lipids   

5 weeks Epididymal Fat
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Male C57BL/6N mice fed 
HFD 

n-3 PUFAs concentrate (46% wt/wt DHA, 14% 
wt/wt EPA) replacing 15% of dietary lipids 

5 weeks  TG 
β-hydroxybutyrate 
Glucose 
Insulin 

[56] 

Male ob/ob mice  n-3 PUFA-enriched diet (6% of total lipid 
content) 

5 weeks 
Body weight 
Epididymal fat 
Cholesterol 
TG 
FFA 

[55] 

Male Sprague-Dawley rats Fish oil (MAXEPA; 14 g/100 g diet wt/wt) 
replacing the source of fat diet 

3 and  6 
weeks 

Body weight 
Epididymal Fat 
Retroperitoneal fat 
 

[106] 

   
 

 

Male db/db mice fed with 
HFD 

Purified marine n-3 PUFAs (Re-esterified to 
triglycerides) replacing 40% of oil volume  

6 weeks Body weight  
NEFA 
TG 
Glucose 

[51] 

Male C57BL/6N mice fed 
HFD 

Herring derived n-3 PUFAs concentrate rich in 
phosphatidylcholine (EPAX AS; 5 g DHA/EPA 
per kg diet) replacing 10% of dietary lipids 

7 weeks Body weight 
Cholesterol 
NEFA 
TG 
Glucose 
Insulin

[47] 
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fa/faZucker rats Menhaden oil replacing 10% (wt/wt) of dietary 
fat   

8.5 weeks Body weight  
Fat depots 
FFA 
TG 
Glucose tolerance 

[52] 

Male Golden Syrian 
hamsters fed HFD 

n-3 PUFAs oil mixture replacing 10% of lard oil 20 weeks 

 

Body weight 
Cholesterol 
TG 
HDL-c
Glucose 
Glucose tolerance 

[36] 

Male Wistar rats fed with 
sucrose-rich diet 7 months 
prior treatment 

Fish oil (7 g cod liver oil/ 100 g diet) replacing 
the source of fat diet  

2 months Body weight  
FFA 
TG 
Glucose 
Insulin 
 

[53] 

Male C57BK/6J (B/6J) 
mice fed HFD 

n-3 PUFAs concentrate (46% wt/wt DHA, 14% 
wt/wt EPA) replacing 15% of dietary lipids 

7 months 
 
Body weight 
Epididymal fat 
NEFA 
TG 
Glucose
Glucose tolerance 

[49] 
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Male C57BL/6N mice fed 
HFD 4 months prior 
treatment 

DHA (-ethyl DHA ester) replaced 1.5% of 
dietary lipids   

2 months Body weight  
Epididymal fat 
Subcutaneous fat 
NEFA 
TG 
Glucose 
Insulin 

[46] 

Male C57BL/6N and  
C57BL/6J mice fed HFD 

DHA (-ethyl DHA ester) replaced 1.5% of 
dietary lipids   

4 months Body weight 
Cholesterol 
NEFA 
TG 
Glucose
Glucose tolerance 
Insulin

Male Wistar rats fed with 
control or cafeteria diet 

EPA ethyl ester (1 g/kg body weight daily; oral 
gavage) 

35 days Body weight 
 Retroperitoneal fat 
Glucose tolerance 
nsulin 
 

[48] 

   Cholesterol 
 TG 
FFA 

[144] 

Male Goto-Kakizaki rats EPA (0.5 g/kg body weight; oral gavage)  Daily for 4 
weeks 

Body weight 
Glucose 
Glucose tolerance 
Insulin 

[54] 
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Male C57BL6/J fed HFD EPA ethyl ester (36 g/kg diet wt/wt) 10 weeks Body weight 
Glucose 
Glucose tolerance 
Insulin

[41] 

Male C57BL/6J mice fed 
HFD 

EPA ethyl ester  (36 g/kg diet (wt/wt)) 11 weeks  Body weight 
 TG 
Glucose 
Glucose tolerance 
Insulin 

[42] 

Male C57BL/6J mice fed 
HFD 6 weeks prior 
treatment   

5 weeks Body weight
TG 
Glucose 
Glucose tolerance
Insulin 
 

Male C57BL/6J mice fed a 
high fat/high sucrose diet 
(HF/HS) or a HFD 

EPA ethyl ester (5 wt% of diet) 20 weeks Body weight
Cholesterol 
NEFA 
TG 
Glucose
Insulin


[44] 
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Male C57BL/6N mice fed 
HFD 

n-3 PUFAs concentrate (46% wt/wt DHA, 14% 
wt/wt EPA)  replacing 15% of dietary lipids + 
Rosiglitazone 

6 weeks Body weight 
NEFA
G 
Glucose 
Insulin 

[43] 

Male C57BL/6N mice fed 
HFD 

n-3 PUFAs concentrate (46% wt/wt DHA, 14% 
wt/wt EPA)  replacing 15% of dietary lipids + 
Rosiglitazone 

8 weeks 

 

 

20 weeks 

 
Cholesterol   
NEFA 
TG 
Insulin                                

Cholesterol 
NEFA
Glucose
Insulin sensitivity 
Insulin

[45] 

Male C57BL/6N mice fed 
HFD 5 months prior to 
treatment 

n-3 PUFAs concentrate (46% wt/wt DHA, 14% 
wt/wt EPA)  replacing 15% of dietary lipids + 
Rosiglitazone 

8 weeks Body weight  
NEFA  
TG 
Glucose  
Glucose tolerance  

, decrease; , increase; , no change; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HFD, high fat diet; HS, high sucrose;  
NEFA, non-esterified fatty acids;TG: triglycerides. 
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Table 2. Effects of endogenously produced n-3 PUFAs in the transgenic mice fat-1 on body composition and metabolic disorders 

Animal model Treatment Duration Outcomes Study 
Males and females fat-1 
and wild type mice fed 
with high n-6 unsaturated 
fat (HUSF)  

HUSF (15% CHO, 62% fat  of which 
77% from linoleic acid and 13% oleic 
acid, 23% protein). After HUSF diet, 
mice were either sacrificed or switched 
to high carbohydrate diet period (58% 
CHO, 13% fat and 29% protein). 

8 weeks 
(HUSF diet) 
3 weeks 
(HC diet) 

Body weight in males 
Body weight (females) 
Fat pads (both males and females),  
Fasting blood glucose 
Glucose AUC (males) 
Glucose AUC (females) 
Insulin sensitivity 

[65] 

Males fat-1 and wild type 
mice fed chow diet or 
HFD 

Chow diet (13% kcal from fat) and 
HFD (55% kcal from fat) 

8 weeks In any variable in LFD groups 
 
Versus HFD group 
Body weight, food intake, 
Adiposity, 
NEFA 
Insulin resistance 
Glucose intolerance 
 
Epididymal adipose tissue 
F4/80+ cells and formation of 
crown-like structures 
MCP-1 (CCL2), RANTES (CCL5), 
IL-1, IL-2, IL-6  
17-HDoHE, PD1, 18-HEPE 

[60] 
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Male fat-1 and wild type 
mice fed HFD 

55 % kcal from fat  8 weeks Epididymal adipose tissue 
Mid-sized adipocytes 
Large and very large adipocytes 
↓Gata3 
PPAR gene expression 
Inhibitors of insulin signal 
transduction (Enpp1, Ptprf) 

[63] 

Male and female fat-1 
mice breeders on C57BL/6 
background  

Modified AIN-76A rodent diet (10% 
corn oil) 
Femoral artery thrombosis and chronic 
artery damage were induced by FeCl3 

8 weeks Macrophage migration in 
perivascular adipose tissue 
N-3 PUFAs exerts its effects via 
activation of FFAR4 (GRP120) 
Thrombus formation 
Artery hyperplasia 
 

[158] 

Male fat-1 mice and 
C57BL/6 mice as control, 
either fed with LFD or 
with HFD 

LFD (70% CHO, 20% protein, 10% fat) 
and HFD (20% CHO, 20% protein, 
60% fat) 

8 weeks In any variable in LFD groups 
 
Versus HFD group 
Body weight gain, adiposity and 
food efficiency 
Energy expenditure 
Plasma leptin 
Food intake,  
TG, NEFA, cholesterol, insulin, 
adiponectin or resistin 
Fasting glycaemia and glucose 
AUC (mediated by PPAR) 
 M1 (F4/80+, CD11c+ cells) 
 M2 (F4/80+, CD206+ cells) 

[61] 
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Males fat-1 mice and 
C57BL/6 mice as control, 
either fed with chow diet 
or with HFD. C57BL/6 
with HFD+n-3 PUFAs 

Chow diet (13% kcal from fat) and 
HFD (60% kcal from fat). 
Control mice fed with n-3 PUFAs-
enriched diet. 
 

16 weeks In any variable in LFD groups 
 
Versus HFD group 
HFD-induced weight gain  
White adipose tissue (epididymal), 
Adipocyte size 
 
Epididymal adipose tissue 
Macrophage infiltration and 
fibrosis  
MCP-1 gene expression 
CD206, IL-10, MGL1 gene 
expression 
IL-6, IL-1, Arg1, RELM and 
Ym1 gene expression 
 

[62] 

2-months and 8-months 
aged males fat-1 mice and 
wild type mice fed with 
AIN-76A test diet 

AIN-76 test diet (10 % corn oil diet).  2 months or 8 
months 

In any variable in the 2-month-old 
mice (fat-1 vs wild type) 
 
8-month-old-mice 
Body weight and epididymal fat 
Blood glucose and insulin 
Glucose AUC 
Insulin sensitivity 
TG and cholesterol 

[64] 

, decrease; ; increase; , no change; 18-HEPE, 18-hydroxyeicosapentaenoic acid; Arg1, arginase-1; AUC, area under curve; CCL, chemokine (C-C motif) 
ligand; Enpp1, ectonucleotidepyrophosphatase/phosphodiesterase 1; FFAR4, free fatty acid receptor 4; GPR120, G protein-coupled receptor 120; HFD, high 
fat diet; IL, interleukin; LFD, low fat diet; M, macrophage, MCP-1, monocyte chemoattractant protein 1; MGL1, macrophage galactose-type C-type lectin 1; 
NEFA, non-esterified fatty acids; PD1, protectin D 1; PPAR, peroxisome proliferator-activated receptor gamma; Ptprf, protein tyrosine phosphatase receptor 
type, F; RELM, resistin-like molecule-; RANTES, regulated on activation, normal T cell expressed and secreted; TG, triglycerides. 
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Table 3.Effects of treatment with n-3 PUFAs-derived SPMs in animal models of obesity and related metabolic disorders. 
 

 

SPM 

 

Animal 

Treatment 

(dose & duration) 

 

Observations 

 

References 

RvD1 ob/ob mice 1.2 ng/g b.w. every 24h during 4 days PPARγ, GLUT4 and IRS-1 gene expression 
 Adiponectin 
 Formation of n-6 PUFAs derived eicosanoids 
 Formation of n-3 PUFAs derived resolvins and 
protectins 

[55] 

 

  
 

  

RvD1 db/db mice 2µg/kg b.w.for 8 to 16 days  Glucose tolerance 
 Fasting blood glucose 
 Adiponectin 
 Insulin-stimulated Akt phosphorylation in WAT 
 AMPK phosphorylation in WAT 
IL-6 expression in WAT 
 Crown-like structures rich in inflammatory 
F4/80+ CD11c+ macrophages 
 F4/80+ cells expressing MGL-1. 

 

[170] 

RvD1 C57BL/6J 

mice 

HFD 

 

300ng every 24h during 3 weeks + Calorie 
restriction 

 Adiponectin  
 IL-4 and IL-10 
Macrophage innate immune response in liver 

[169] 
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17- HDHA db/db mice 50 ng/g b.w. every 12 h during 8 days, or 
continuous application for 15 days 

 Expression of MCP-1, TNF-α, IL-6 and 
osteopontin in WAT 
 Adiponectin 
 Glucose tolerance and insulin sensitivity 
 

[166] 

 

Protectin 

DX 

db/db mice 1 µg intravenously immediately before and 2.5 h 
into the 6-h lipid infusion 

 IL-6 expression in skeletal muscle 
 AMPK phosphorylation in skeletal muscle 
 Insulin sensitivity in skeletal muscle 

[171] 

, decrease; , increase; , no change; GLUT4, glucose transporter 4; IL, interleukin; IRS-1, insulin receptor substrate-1; MCP-1, macrophage 
chemoattractant protein; MGL-1, macrophage galactose-type C-type lectin-1; PPAR, proliferator-activated receptor γ; PUFAs, polyunsaturated fatty 
acids; TNF-, tumor necrosis factor-; WAT, white adipose tissue. 
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FIGURE LEGENDS 
 
 
Fig. 1. Overview of the pathways involved in the formation of n-3 PUFAs-derived bioactive lipid 

mediators. COX: cyclooxygenase, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, HEPE:  

hydroxyeicosapentaenoic acid, HpDHA: hydroperoxydocosahexaenoic acid, HpEPE: 

hydroperoxyeicosapentaenoicacid, LOX lipoxygenase, 17-HDHA: 17-hydroxydocosahexaenoic acid. 

 

 

Fig. 2.Summary of mechanisms by which n-3 PUFAs (EPA and DHA) regulate adipose tissue 

metabolism and functions.Marinen-3 PUFAs modulate adipocyte fat storage and mobilization, 

favoring adipocyte oxidative metabolism through the stimulation of mitochondrial biogenesis 

and fatty acid oxidation. EPA and DHA also regulate adipocyte glucose utilization and insulin 

sensitivity (Akt phosphorylation). These n-3 PUFAs actions are in part mediated by PPARγ 

and AMPK activation. Potential britening actions of n-3 PUFAs on WAT have been also 

suggested. Marine origin n-3 PUFAs also regulate the secretion of adipokines involved in 

energy homeostasis and intermediate metabolism, which could also contribute to the 

beneficial effects of these fatty acids on glucose and lipid metabolism.  EPA and DHA can 

mitigate adipose tissue inflammation by regulating the production of pro-inflammatory 

chemokines and cytokines, by decreasing M1 macrophage infiltration, by reducing the 

formation of n-6 derived pro-inflammatory lipid mediators and being substrates for the 

formation of pro-resolutive lipid mediators, such as resolvins, protectins and maresins. 
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